
physics Documentation
Release 0.1

bczhu

October 16, 2014





Contents

1 Classical Mechanics: 3
1.1 Phase space Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Topological Insulator: 5
2.1 Berry’s Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Weyl Semi-metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Condensed Matter Physics: 9
3.1 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Fermi’s Golden rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Some topics want to explore 11

5 Indices and tables 13

i



ii



physics Documentation, Release 0.1

Welcome! This is the place for me to write some notes on physics. Contents will be added indefinitely.
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2 Contents



CHAPTER 1

Classical Mechanics:

1.1 Phase space Lagrangian

The climax part of classical mechanics lies in the Lagrangian and Hamiltonian form. It starts with the extremal
principle, the real motion of a mechanical system is the one makes the variation of the action 𝑆 vanish, i.e.,

𝛿𝑆 = 𝛿

∫︁
𝐿(𝑞, 𝑞, 𝑡)𝑑𝑡 = 0

When the Lagrangian is not depend on time explicitly, we get

𝛿𝐿 =
𝜕𝐿

𝜕𝑞
𝛿𝑞 +

𝜕𝐿

𝜕𝑞
𝛿𝑞 =

𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕𝑞
𝛿𝑞

)︂
+

[︂
𝜕𝐿

𝜕𝑞
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞

]︂
𝛿𝑞

which gives us the Lagrangian equation:

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞
=
𝜕𝐿

𝜕𝑞

Define the canonical momentum 𝑝 = 𝜕𝐿
𝜕𝑞 , we have

𝑝̇ =
𝜕𝐿

𝜕𝑞

We can easily prove that energy is an integral of motion (which is a conserved quantity in motion) based on the
homogeneity of time. When the Lagrangian does not depend on time explicitly, we found that its total derivative is

𝑑𝐿

𝑑𝑡
=
𝜕𝐿

𝜕𝑞
𝑞 +

𝜕𝐿

𝜕𝑞
𝑞

=
𝑑

𝑑𝑡
(𝑝𝑞)

We have used Lagrangian equation in the above derivation,and we have now

𝑑

𝑑𝑡
(𝑝𝑞 − 𝐿) = 0

indicating that is conserved in the motion, which is called Hamiltonian with physical meaning of energy.
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4 Chapter 1. Classical Mechanics:



CHAPTER 2

Topological Insulator:

2.1 Berry’s Phase

2.1.1 Preliminary

2.1.2 some topics

• fiber bundle

• graphene(trival Weyl semi-metal)

• gauge/parallel transport

• symmetry

2.2 Weyl Semi-metal

2.2.1 Graphene

In the tight-binding approximation, when only nearest neighborhood couplings are considered, the Hamiltonian of
Graphene can be written as:

𝐻̂(𝑘⃗) = −𝑡

(︃
0 ℎ(𝑘⃗)

ℎ*(𝑘⃗) 0

)︃

where ℎ(𝑘⃗) =
∑⃗︀
𝛿𝑖

𝑒𝑖𝑘⃗·𝛿⃗𝑖 = |ℎ(𝑘⃗)|𝑒𝑖𝜑(𝑘⃗), 𝛿⃗𝑖 are three position vectors shown in the following diagram.

Then the Hamiltonian is:

𝐻̂(𝑘⃗) = −𝑡|ℎ(𝑘⃗)|

(︃
0 𝑒𝑖𝜑(𝑘⃗)

𝑒−𝑖𝜑(𝑘⃗) 0

)︃

with the eigen-value: 𝐸(𝑘⃗) = −𝑡|ℎ(𝑘⃗)| and eigen-function (only show one of the two):

𝑢(𝑘⃗) =
1√
2

(︃
𝑒𝑖𝜑(𝑘⃗)/2

𝑒−𝑖𝜑(𝑘⃗)/2

)︃
𝑒𝑖𝜓(𝑘⃗)
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Figure 2.1: Fig. 1 Crystal Structure of Graphene: 𝑎⃗1 and 𝑎⃗2 are Bravais crystal vectors for a Graphene unit cell.
Each primitive unit cell has two atomic sties, A and B. 𝛿⃗𝑖 specifies B-s’ position around A site. (b) Brillouin Zone for
Graphene 𝑏⃗1 and 𝑏⃗2 are reciprocal vector basis for intrinsic Graphene. Its corners are known as K and K’ points.

We should notice that the 1/2 factor is quite important here, when 𝜑 changes 2𝜋, the wave-function does not return
to its original value, but with a minus sign. If instead, we want the wave-function to be single valued, the function
:math:‘psi(vec{k})‘should change accordingly.

At the vicinity of Dirac point (K or K’, here we expand the things near K), we have:

𝐻̂(𝐾⃗ + 𝑞⃗) =𝛼

(︂
0 𝑞𝑥 + 𝑖𝑞𝑦

𝑞𝑥 − 𝑖𝑞𝑦 0

)︂
= 𝛼(𝑞𝑥𝜎𝑥 − 𝑞𝑦𝜎𝑦)

=𝛼|𝑞|
(︂

0 𝑒𝑖𝜑(𝑞)

𝑒−𝑖𝜑(𝑞) 0

)︂
We can see that the general 𝜑 turn out to be the angle of 𝑞⃗ with the x axis. Then, wind a circle around the Dirac point
K at some energy in the band structure shown below (Fig. 2(a)), the corresponding 𝜑 (Fig. 2(c))winds one round too.

Figure 2.2: Fig. 2 Dirac cone and the winding of 𝑞⃗ and 𝜑

So, if 𝑞⃗ circles around the Dirac point one turn, 𝜑 changes from 0 to 2𝜋, in order to keep the basic wave-function 𝑢(𝑞⃗)
single-valued, 𝜓 must changes 𝜋.

More explicitly, we calculate the vector potential in momentum space with:

𝐴⃗(𝑘⃗) = 𝑖⟨𝑢†|∇𝑘⃗𝑢(𝑘⃗)⟩=−∇𝜓(𝑘⃗)

Then we got:

𝛾 =

∮︁
𝐴⃗ · 𝑑𝑘⃗ = −𝜓(𝜑 = 2𝜋) + 𝜓(𝜑(0)) = −𝜋

We got the Berry’s phase 𝛾 = ±𝜋. It is this non-trivial phase of the equal-frequency surface that makes us call it Weyl
semi-metal, and the Dirac points called Weyl nodes.

2.2.2 Three dimension: Weyl semi-metal and Chern number

In three dimension, things can goes the same way. Using a simple model with Hamiltonian:

𝐻(𝑘⃗) = [−2𝑡𝑥 (𝑐𝑜𝑠𝑘𝑥 − 𝑐𝑜𝑠𝑘0) +𝑚 (2 − 𝑐𝑜𝑠𝑘𝑦 − 𝑐𝑜𝑠𝑘𝑧)]𝜎𝑥 + 2𝑡𝑦𝑠𝑖𝑛𝑘𝑦𝜎𝑦 + 2𝑡𝑧𝑠𝑖𝑛𝑘𝑧𝜎𝑧

6 Chapter 2. Topological Insulator:
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It has two Weyl nodes: 𝐾⃗ = ± (𝑘0, 0, 0), which means if we treat 𝑘𝑥 as a variable, only when 𝑘𝑥 = ±𝑘0, the
corresponding energy band 𝐸𝑘𝑥(𝑘𝑦, 𝑘𝑧) is crossing at the point 𝑘𝑦, 𝑘𝑧 = (0, 0).

Also, at the Weyl node (say 𝑘𝑥 = 𝑘0), we have:

𝐻(𝐾⃗ + 𝑞⃗) = 𝑣𝑥𝑞𝑥𝜎𝑥 + 𝑣𝑦𝑞𝑦𝜎𝑦 + 𝑣𝑧𝑞𝑧𝜎𝑧

with 𝑣𝑥 = 2𝑡𝑥𝑠𝑖𝑛𝑘0, 𝑣𝑦 = 2𝑡𝑦, 𝑣𝑧 = 2𝑡𝑧 . Without loss of generality, we can set 𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 (the only effect is the
shape changing from sphere to ellipsoid, which has no effect on the topology), then we get:

𝐻(𝐾⃗ + 𝑞⃗) = 𝑣𝑞⃗ · 𝜎⃗

with eigen-value: 𝐸(𝑘⃗) = 𝑣|𝑞⃗| and eigen-function (only show one of the two):

𝑢(𝑘⃗) =

(︂
𝑠𝑖𝑛 𝜃2

−𝑐𝑜𝑠 𝜃2𝑒
𝑖𝜑

)︂
𝑒𝑖𝜒

It is easy to find that this wave-function will give us a magnetic field with a monopole at 𝐾⃗, which will give us
non-trivial equal-frequency surface Chern number 𝐶 = 1.

2.2.3 Bulk-boundary corresponding

In order to see things clearer, also, to see the connection of Weyl semi-metal with Topological insulator, we treat 𝑘𝑥 as
a variable, the Hamiltonian is:

𝐻𝑘𝑥(𝑘𝑦, 𝑘𝑧) = ℎ⃗(𝑘⃗) · 𝜎 = [−2𝑡𝑥 (𝑐𝑜𝑠𝑘𝑥 − 𝑐𝑜𝑠𝑘0) +𝑚 (2 − 𝑐𝑜𝑠𝑘𝑦 − 𝑐𝑜𝑠𝑘𝑧)]𝜎𝑥 + 2𝑡𝑦𝑠𝑖𝑛𝑘𝑦𝜎𝑦 + 2𝑡𝑧𝑠𝑖𝑛𝑘𝑧𝜎𝑧

For example, we set 𝑡𝑥 = 𝑡𝑦 = 𝑡𝑧 = 1,𝑚 = 2, 𝑘0 = 1, three typical energy band dispersion shown below:

Figure 2.3: Fig. 3 Typical energy band dispersion with (a) 𝑘𝑥 = 0, (b) 𝑘𝑥 = 𝑘0 = 1, (c) 𝑘𝑥 = 2.

To see if the system with 𝑘𝑥 ̸= 𝑘0 is a topological insulator or not, we can plot the diagram of ℎ⃗(𝑘𝑦, 𝑘𝑧), and see how
many times the resulting torus incorporates the origin point. Typical shape of the torus shows below:

Figure 2.4: Fig. 4 Typical torus of ℎ⃗(𝑘𝑦, 𝑘𝑧) with 𝑘𝑥 = 0.

We found that at the region 𝑘𝑥 = [−𝑘0, 𝑘0], the origin point is in the torus once with Chern number 𝐶 = 1, outside
of that, we got 𝐶 = 1 (Noticing we have 𝑘𝑥 = [−𝜋, 𝜋]) . This is why we plot the edge state in Fig. 4(a), but not
in Fig. 4(c). In the non-trivial case, for any energy inside the gap, we get a edge state, so different 𝑘𝑥 will give us a
edge-state line, which is called Fermi-arc, especially, when we look at the case of Fermi surface with energy 𝐸 = 0,
the Fermi-arc stretch from one Weyl node to another, like the picture shown below:

2.2. Weyl Semi-metal 7
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Figure 2.5: Fig. 5 Fermi arc.
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CHAPTER 3

Condensed Matter Physics:

3.1 Linear response theory

3.1.1 Kubo formula

Many times, the world shows us as a black box, we can only get limited knowledge about it and the rest are filled
with our theories, in this way, theories can always changing and are never completed. we always use a probe to probe
a system and check its response to this probe, and naturally, we expect when the perturbation of the probe is ignorable
to the system, the response should be linear to the probe, which is called linear response theory. The most important
result of linear response theory is consummated by Kubo formula, we are now going to derive it.

Zero temperature

Let 𝐻̂0 be the full manybody Hamiltonian for some isolated system that we are interested in, and assume the existence
of a set of eigenkets {|𝑛⟩} that diagonalize 𝐻̂0 with associated eigenvalues (energies) 𝜀𝑛.

In addition to 𝐻̂0, we now turn on an external probe potential 𝑉 (𝑡), such that the total Hamiltonian 𝐻̂(𝑡) satisfies:

𝐻̂(𝑡) = 𝐻̂0 + 𝑒𝜂𝑡𝑉 (𝑡)

Note: The additional factor 𝑒𝜂𝑡 means we switch on the external potential adiabatically from 𝑡→ −∞, we’ll see later
that it is this factor gives us the way to detour the singular points, it is an analytical continuation which is a reflection
of causality.

The Schrödinger equation of the system now reads:

𝑖ℎ̄
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = (𝐻̂0 + 𝑒𝜂𝑡𝑉 (𝑡))|𝜓(𝑡)⟩

Warning: us the way to detour the singular points, it is an analytical continuation which is a reflection of causality.

Important: us the way to detour the singular points, it is an analytical continuation which is a reflection of causality.

Hint: us the way to detour the singular points, it is an analytical continuation which is a reflection of causality.

9
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3.2 Fermi’s Golden rule

10 Chapter 3. Condensed Matter Physics:



CHAPTER 4

Some topics want to explore

• Phase-space Lagrangian

11
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CHAPTER 5

Indices and tables

• genindex

• modindex

• search
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